

FD-2851

BCA (Part-I) Examination, 2022

DISCRETE MATHEMATICS

Paper - I

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 27

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) (I) If $p \equiv \text{Ramesh}$ is a player $q \equiv \text{Mohan}$ is wise, then write the following symbols in sentence:

(i) $\sim pv \sim q$

(ii) $\sim (p \wedge q)$

DRG_14 (7)

(Turn Over)

- (II) Write the following sentences in symbols:
 - (i) Until Sheela will not come I shall not go to college.
 - (ii) When Sheela will come then I shall go to colleage.
- (III) Write True or False of the following statements:
 - (*i*) $\{2, 3\} \subset \{2, 4, 6\}$
 - (*ii*) $5 \in \{1, 3, 5\}$
- (IV) Are the following propositions?
 - (i) Some roses are black.
 - (ii) May you live long.
- (b) Prove that $(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$ is a Tautology.
- (c) (I) If Q(x) = x is a rational number.

R(x) = x is a real number.

then translate the following sentences into symbols:

- (i) R is a real number.
- (ii) Every rational number is a real number.
- (II) Negate each of the following statements:
 - (i) $\forall x (|x| = x)$
 - (ii) $\exists x (x+2=x)$

(III) Write the following predicate into symbols and also write its negative in symbols. "Every rational number is a real number."

Unit-II

- **2.** (a) (I) In a Boolean algebra B, the identity elements are complementary to each other i. e., for $0, 1 \in B$, then show that :
 - (*i*) 0' = 1
 - (ii) 1' = 0
 - (II) In a Boolean algebra, show that if a + b = a + c and ab = ac, then b = c.
 - (b) (1) Show that the order relation \leq is partial order relation in a Boolean algebra.
 - (II) In a Boolean algebra B, if $x \le y$ and $y \le x$, then prove that x = y.
 - (c) (I) Construct a circuit for the Boolean function

$$F(a, b, c) = a \cdot b \cdot c + a' \cdot b \cdot c$$

Simplify it and draw the figure.

(II) Draw the logic circuit with inputs a, b, c and output X where

$$X = abc + a'c' + b'c'$$

Unit-III

3. (a) (I) Express the following function in disjunctive normal form in the smallest possible number of variables:

$$f(x, y, z) = xy' + xz + xy$$

(II) Express the following function in conjunctive normal form:

$$f(x, y, z) = (xy' + xz)' + x'$$

(b) (I) Simplify the following circuit.

(II) Design a 3-terminal circuit which gives the real forms to the following functions:

$$f = xzw + y'zw$$
$$g = xzw + y'zw + x'y'z$$

(c) (I) Draw the binomial net for the following flow functions:

$$x \cdot y \cdot z + x' \cdot y \cdot z + xy'z + x'y'z'$$

(II) Design a tree-net in three variables for the flow function:

$$xyz + x'yz + xy'z + x'y'z$$

Unit-IV

- **4.** (a) (I) If $A = \{1, 2, 3\}$, $B = \{2, 4\}$ and $C = \{3, 5\}$, then find $A \times (B C)$.
 - (II) If $A = \{1, 2\}$, $B = \{2, 3\}$ and $C = \{3, 5\}$, then find $(A \times B) \cap (A \times C)$.
 - (b) (I) Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$ and let $R = \{(1, a), (2, a), (2, b), (3, a), (3, b)\}$ be a relation from A to B, then find R^{-1} , d(R), r(R), $d(R^{-1})$ and $r(R^{-1})$
 - (II) Is the relation 'is less than' transitive in the set of natural numbers?
 - (c) (I) Prove that the following sets are countable:
 - (i) the set I of all integers;
 - (ii) the set E of all positive integers.
 - (II) If $A = \{1, 3, 5\}$, $B = \{a, b, c\}$ and $1 \leftrightarrow a$, $3 \leftrightarrow b$, $5 \leftrightarrow c$, show that it is one-one onto mapping.

Unit-V

- **5.** (a) (I) Show that the vertices of odd degree (odd vertices) in a graph is always even.
 - (II) Draw the equivalent labelled graphs for G_1 and G_2 if

$$G_1 = \{ \{v_1, v_2, v_3\} \ \{v_1, v_2\} \ \{v_1, v_3\} \\ \{v_2, v_3\} \}$$

$$G_2 = \{\{w_1, w_2, w_3\} \ \{w_1, w_2\} \ \{w_1, w_3\}$$

 $\{w_2, w_3\}\}$

(b) (I) Draw the graphs represented by the following adjacency matrices:

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

(II) Express the following algebraic expressions in binary trees:

$$(x-y) + ((y+z) + w)$$

(c) (I) Which of the following graphs have a Hamiltonian circuit?

(II) A graph with at least one edge is 2-chromatic if and only if it has no circuits of old length.